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The miscibility of a homopolymer in corresponding domains of a copolymer predicted by Meier's theory is 
far less than found experimentally. In this paper, a density gradient model is suggested for describing the 
segment distribution of the bound and free chains in block copolymer-homopolymer systems. Using this 
model, Helfand's theory, which has been successful in explaining microphase separation of block copolymers, 
is extended to polymer blends of homopolymer and corresponding block copolymer with lamellar structure. 
The calculated free energy of mixing of the system shows that the predicted miscibility is much larger than 
that obtained by Meier's theory and is in good agreement with the main known experimental results. In 
particular, on the basis of the present theory, homopolymer can be expected to be solubilized by 
corresponding blocks in the whole composition range provided that the molecular weight of the former is less 
than that of the latter. 
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INTRODUCTION 

In this series of research papers dealing with the 
miscibility of blocks of a copolymer and corresponding 
homopolymers, based on systematic studies of blends of 
various copolymers and polymers, it has been shown that 
the molecular weight ratio of the homopolymer to that of 
the corresponding block chains of the copolymer and 
molecular architecture of the copolymer have a 
considerable effect on homopolymer--copolymer mis- 
cibility~-3. However, concerning the relevant statistical 
theory, even for the simplest case of diblock copolymer 
with lamellar structure, the miscibility predicted by 
Meier's unique theory 4 differs greatly from experimental 
results. A new theoretical project to explore the nature of 
miscibility in polymer blends comprising copolymers and 
predict the basic relations between miscibility and 
molecular parameters as well as structures of the 
component polymers has been started and initial results 
are reported here. 

As an extension of his theory of microphase 
separation 5, Meier first developed a theory for the 
miscibility of blends of block copolymer AB and 
homopolymer (A or B). The free energy change associated 
with the solubilization is considered to be composed of 
the following terms: changes of interfacial energy; 
placement entropy; constraints and perturbations of both 
homopolymers and block copolymers; and entropy of 
mixing. Meier concluded that miscibility depends 
considerably on the molecular weight ratio of 
homopolymer to copolymer; and that the larger is the 
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ratio, the less is the miscibility. This is in conformity with 
experimental results. However, the predicted miscibility 
is very limited. For example, only 5 ~ homopolymer A is 
expected to be solubilized in the domains of block A when 
the molecular weight of homopolymer A (~tH) is equal to 
that of block A (MA) in the copolymer. This predicted 
miscibility is about one order of magnitude less than that 
found by electron microscope and SAXS studies. Meier 4 
attributed this discrepancy to the nonequilibrium nature 
of the solvent-cast films used for the experimental 
observations. This explanation is not convincing since the 
theoretical result is in conflict with the data from various 
laboratories 7-10 and some of the micrographs reported in 
the literature show regular arrangement of the domain 
structure, which indicates that the films are at least close 
to equilibrium. In fact, in the authors' opinion, the reason 
for this discrepancy can lie only in defects of the physical 
model used in the theory. 

In recent years, Heifand 11-~4 has developed a 
statistical theory of block copolymers in which the mean- 
field theory, the modified diffusion equation and narrow- 
interface approximation were used for calculating the free 
energy change during microphase separation and then 
the equilibrium shape and dimensions of the domains 
were evaluated. The theory has been found to be in 
accordance with experimental results. Helfand's theory 
provides a suitable theoretical base for exploring the 
problem of miscibility of homopolymer-block copolymer 
systems. In this paper a density gradient model is 
suggested. Based on Helfand's theory and using this 
model, the free energy change is calculated for a 
homopolymer-copolymer system in which the copolymer 
has a lamellar structure. The results predict much higher 



miscibility than that of Meier's theory and explain the 
most relevant experimental results reported in literature. 

DENSITY GRADIENT MODEL 

Meier formulated a statistical theory of microphase 
separation of block copolymers. In the theory, the density 
nonuniformity of the segments in domains caused by the 
requirement of the A-B junctions to be localized at the 
interface region is compensated by homogeneous 
extension of the blocks with accompanying loss of 
conformation entropy. However, in his theory dealing 
with the miscibility of homopolymer and corresponding 
chains of related block copolymers, Meier assumed that 
in the whole block domains where the homopolymer is 
solubilized the segment densities of both the free and 
homo chains are constant. This assumption can be 
realized only if the bound chains adopt some very 
improbable conformations for filling the domain centres 
that entail high entropy loss, which may exceed the 
driving force of the solubilization, namely the 
combinatorial entropy increment in the solubilization. 
Thus, this assumption is likely to be one of the main 
factors resulting in the prediction of low miscibility. 

A close inspection of some published micrographs of 
homopolymer-block copolymer blends reveals that 
Meier's assumption is to some extent unrealistic. For 
example, Figure 2 of ref. 7 shows, for a blend of diblock 
copolymer of styrene and isoprene with lamellar 
structure and a large quantity of polystyrene, that the 
lamellar microdomains of PB are randomly diluted by 
homo PS. In the micrograph, the distance between some 
neighbouring PB domains reaches the order of 104 A. In 
addition, Figure 9 of ref. 1 also shows that the distance 
between the neighbouring rod-like polybutadiene 
domains may be as large as 104 A. However, in these 
examples, the molecular weights of PS blocks are only 
23x 104 and 9.5x 104 and the corresponding 
unperturbed chain dimensions are only ,-~321 A and 
,-~ 206 A respectively15. Apparently, it is almost 
impossible for such PS blocks to extend to the centre of 
the enlarged PS domains. This virtually implies that the 
region near the centre of the domains is filled only by 
homopolymer chains. 

In the case of pure block copolymer, the requirement of 
uniformity of total density of the segments in the domains 
can be fulfilled only by adjusting the conformations of the 
blocks of the copolymer. However, for blends of 
homopolymer and copolymer, obviously this require- 
ment can be satisfied by changing the conformations of 
both the bound and free chains. In particular, by contrast 
with block chains, homopolymer chains with two free 
ends are able to assume suitable spatial distributions to 
compensate partially for nonuniformity of segments 
caused by the localization of the A-B junctions. Based on 
these considerations, in this paper a density gradient 
model in copolymer-homopolymer systems is assumed: 
maintaining a constant total reduced density of the 
segments in the whole domains solubilized with 
homopolymer chains, the blocks form a distribution of 
segment density decreasing from the boundary to the 
centre of the domains while the segment density of 
homopolymer decreases from the centre to the interface of 
the domains. For the case of lamellar-structure block 
copolymer, the model is shown schematically in Figure 1. 

Phase separation in copolymer blends: 7: H. Xie et al. 

A B 
B A + homo A 

Figure 1 Schematic representation of lamellar domains of block 
copolymer swollen by homopolymer without details of the interface 
region. Broken and solid lines denote homo and block chains 
respectively 

In this paper, for simplifying the calculation the gradients 
of both the bound and free chains are assumed to be 
constant; that is, the density profile gradients are linear. 
Although this is only a rough description of the 
distributions of the segment densities, as will be seen later, 
the results based on this model are in good agreement 
with experimental data. 

THEORY OF MISCIBILITY IN 
HOMOPOLYMER-BLOCK COPOLYMER 
SYSTEMS 

This initial research dealing with the miscibility theory of 
copolymer-homopolymer systems will concentrate on 
the case in which the block copolymer has characteristic 
lamellar structure. First, the relevant parameters and 
symbols characterizing the system are as follows: 

1. For convenience, in this paper A, B and H are used 
to denote block A and block B in the copolymer and 
homopolymer A respectively. 

2. The density (the segment number per unit volume) 
of the polymer of type k (A or B) when pure is designated 
as Pok" We will often express the density of k segments in 
the blends in reduced units: 

(note that Helfand uses Finstead of ~. 
3. The Kuhn statistical length of a segment of k is b~. 
4. The degree of polymerization of a homopolymer or 

block is Z k. 
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5. The total number of block copolymer molecules is N 
and that of the dissolved homopolymer A is N,.  

6. The molecular weight of block A is M A while that of 
homopolymer A is M,.  

7. The volume ratio of dissolved homopolymer A to 
block A chains is q. 

8. dA and dB denote the width of A and B domains 
respectively while d denotes the periodicity distance, i.e. 
the sum of A domain and B domain widths, 

d=dA +dH 

d A and dB are related by 

dAPoA _dBpoa 
ZA Z a  

(1) 

when no homopolymer is dissolved. However, after 
solubilization, the A domain width will become dA(1 + q) 
while B domain width will remain unchanged. 

With regard to the theoretical treatment of the 
miscibility between homopolymer A and block A of the 
copolymer, the main point is to calculate the free energy 
change of the system during solubilization. Clearly, 
before solubilization, the system is made up of two 
independent subsystems, i.e. the block copolymer AB and 
homopolymer A. If the free energies of the subsystems are 
denoted by Fc0 and F.o respectively, we have 

Fo = Fco + F .  o (2) 

where F 0 is the total free energy of the system. 
After solubilization, the total free energy becomes 

FI = F G + F., + Fmi x (3) 

where Fc, and FH1 a r e  the free energies of the block 
copolymer AB and the homopolymer A after solubilization 
respectively while Fmix is the free energy of mixing. 
Therefore, the free energy change of the system due to 
solubilization is given by 

AF = F 1 -- F o = (Fc, - Fco) + (F.1 - FHo) + Fmix 

= AFc + AF. + Fraix (4) 
The contributions of each term in equation (4) are now 
discussed. 

Free energy change of block copolymer AB, AFc 
According to Helfand's theory, based on the narrow- 

interface approximation, the free energy change of block 
copolymers of lamellar structure during microphase 
separation is given by 

F 2~ (ZA + Z , ' ] l + l n (  d "] 
NKT K--~\--P~oA ~oB)d \-~JJJ 

--~t(ZA ~(Za ~/(ZA +Z~ ~--In~A--ln~B (5) 
\POA,/k, PoB./ / \PoA Poll,/ 

Here 7 is teh interfacial tension, • is a parameter that 
measures the degree of repulsion between A and B and 
relates to AA and BB interactions, aj is the interfacial 
width, KB is Boltzmann's constant and T is absolute 
temperature. The possible changes of the terms in 

equation (5) caused by solubilization of homopolymer A 
are now examined. 

The first term is associated with the contribution of the 
interfacial energy. In accordance with the density 
gradient model, the probability that the solubilized 
homopolymer A chains will reach the interfacial region 
between A and B domains is almost zero. Hence, it is 
reasonable to assume that solubilization hardly affects the 
interfacial term. 

The second term is so-called placement entropy, 
accounting for the entropy loss of the block copolymer 
due to the restriction of A-B junctions to the interfacial 
region. This is a function of the ratio of the volume of the 
interfacial region to that occupied by the block chains. 
Note that dissolution of homopolymer A will bring about 
only variation of the density profile of the block A chains 
but not of the virtually occupied volume of the blocks. In 
addition, as just mentioned, the interfacial region is not 
affected by solubilization of homopolymer A. Therefore, 
there is reason to think that solubilization has no effect on 
the placement entropy term. 

The third term assigns the zero of free energy to a 
homogeneous phase of block copolymer. It is merely a 
constant and is unrelated to solubilization of 
homopolymer. 

The fourth and fifth terms represent the contributions 
of the change of the conformation entropy of blocks A 
and B respectively. For the block copolymer AB, with A- 
B junctions lying in the interfacial region, f2 k represents 
the probability that chains of type k assume the 
conformations that keep density homogeneity in domain 
k. Clearly, when homopolymer is solubilized in the A 
domains, the B domains remain unchanged as does fiB, so 
that the only term affected by solubilization is the fourth 
term, In flA" If the conformational entropy of block A 
before and after solubilization is denoted by K In Q~A °) and 
Kin f~kl~ respectively, the corresponding change in free 
energy is given by 

AF 
= - (In c~(a) 1,~ n(o)~ "OA - "  . . . .  A J (6) NKT 

Thus, it is clear that, in the investigation of the miscibility 
between block copolymer and corresponding homo- 
polymer, one of the key points lies in the calculation of the 
conformational entropy change of the block A chains. 

Since Helfand's theory 11-14 of block copolymers is the 
basis of the argument in this paper, the main points of the 
theory are mentioned here very briefly. In polymer 
conformational statistics, attention has been paid to a 
function Qk(~',t;?'o), which is proportional to the 
probability density that a chain of type k with number of 
segments (degree of polymerization) t has one end at~ and 
the other at~o. For the random coil model, in a uniform 
system of type k, Qk is the familiar Gaussian satisfying the 
simple diffusion equation. Employing mean field theory, 
Helfand has shown that for the system of block 
copolymer AB, Qk satisfies a modified diffusion equation 

OQ k _b 2 V2,. 1 ( [ /3k,(~ ) ~2 

+ rK~[/SA(~ + Ps(~-- 1]}Qk (7) 
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where x is the compressibility. In addition, in equation 
(7), if k is A then k' is B and vice versa. The term in braces 
represents (1/KBT) times the chemical potential change of 
bringing a segment of type k from pure k into the region 
with the densities bA(~) and PB(~). 

Helfand successfully used this equation to calculate the 
conformational entropy of block copolymer in resolving 
the microphase separation problem. Later, he 
considerably simplified the equation by adopting the so- 
called narrow-interface approximation (NIA). Under 
NIA condition, the equations determining the properties 
of the block copolymers with lamellar domain structure 
in the A domain and into interface are as follows: 

R#-~-= -L~'Q (8) 

~2 
L #  - ~- u ( y )  ( 9 )  

63y 2 

RA = 61/2dA/2bA (1 O) 

7,, (x) = ~ ( y ) A ( x -  xo) (11) 

Z A 1 

/3(y) = ~ f  dtfdyAQ(YA,Zg--t;y)Q(y,t;1) 
0 o 

(12) 

= fdyAO (YA,ZA ; 1 ) (13) 

with boundary conditions 

aQay y=o =a~Qay r=l = 0  (14) 

and initial condition 

Q(y,t = 0;y0) = 6(y- yo) (15) 

where Q(y,t;yo) is the probability function and y = 2X/dA is 
the reduced distance. The function u(y) is to be selected 
for maintaining uniform density in the domain, i.e., 

/50,)= 1 (O~<y~< l) (16) 

Equations (8)-(16) can also be applied to B domains. 
The solution of these equations is quite complex. In 

achieving the numerical solutions, Helfand adopted a 
piecewise constant function {ui(y)} for u(y). To solve 
equations (8) to (16), a function u(y) is selected as a first 
approximation. Q,/3 and f2A can then be written in terms 
of the spectrum of Lf. The eigenvalues of the ~ operator 
are determined by the boundary conditions while the 
coefficients of the eigenfunctions are determined by the 
initial condition. If ~3(y) is not everywhere equal to unity 
then u(y) is readjusted by a Newtonian iteration 
technique. In fact, t3(y) cannot be equal to unity in the 
whole range of y, therefore it is ~3 i (i= 1,2...), the mean 
values of/5(y) over small intervals, that will be unity by 
repeated iteration and the final k In QtA°) will be the desired 
conformational entropy. 
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Helfand has fitted his evaluated data to a formula 

- In Ok = O.085(Rk/Z]/z)2. s 

Furthermore, Helfand obtained the domain size at 
equilibrium by minimization of the free energy. For the 
case of ;~Z = 37, where X is the Flory-Huggins interaction 
constant, the equilibrium domain width satisfies the 
relationship d/bZ 1/2=3.1 while for g Z = I 0  the 
corresponding equation is d/bZ~/2=2.4. For styrene 
and isoprene of diblock copolymer, according to 
the results of the SAXS measurements t6, the condi- 
tions of d/bZ 1/2 = 2.4 and d/bZ t/2 = 3.1 approximately 
correspond to the block copolymers with molecular 
weights of 2 x 104 and 1 x 105 respectively. 

Now the conformational entropy of block A chains in 
A domain swollen by homo A is considered. In the density 
gradient model, a basic requirement is that for a miscible 
homopolymer A-copolymer system, the total density of 
the system is maintained constant throughout 
microdomains, i.e. the reduced density of block A chains 
plus that of homo A chains must equal unity in A domain 
in a sense of piecewise average over small intervals. The 
corresponding density profiles of homo A and block A are 
shown in Figure 2. 

Under the constraint of this type of P l(Y), the probability 
function QA(~',t;~'o), may still be obtained by solving the 
diffusion equation (7) with the subsidiary equations (9) to 
(15). However, owing to the dissolution of the 
homopolymer, the size of A domain has to extend to 
dA(1 +q) and correspondingly, equation (12) should be 
replaced by 

Z A 1 

[ ) ( Y ) - - ( 1 - ' } - ~ r ~ A Z A f  dt f dyAQ(yA,ZA-t;y)Q(y,t;1) 
0 o (17) 

whereas the reduced distance is redefined as 

2x 

Y=dA(1 +q) 

dA(1 +q) 

0 .~--~x 
dA(1 +q) 

1.0 ~ , ~  . . f - - - - ~ . £ H  A 

x 

dA(1 +q) 
Figure 2 Profiles of the reduced densities of block chains ( ), 
and homopolymer chains ( - - - ) .  (a) q=  1/2; (b) q=  1; (c) q=3/2  
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Using procedures similar to those mentioned above for 
the pure block copolymer, f~A ~) was obtained by repeated 
iteration and the result is shown in Figure 3. The 
contribution of the conformational entropy change of the 
A chains of the block copolymer is then easily calculated 
by equation (6). The relevant mathematical formulas can 
be found in more detail in the appendix of ref. 6. 

The free energy change of homopolymer AFu 
The conformational entropy change ofa homopolymer 

during solubilization may be evaluated by employing 
Helfand's theory of inhomogeneous polymers ~ 7. The key 
point still lies in the calculation of Q ~,t ;~o), which satisfies 
the diffusion equation 

'~Qk b2 ~721") [Uk(~ ~) ]l~ (18) 

Under the mean field approximation, uk(y-)/KBTmay " be 
replaced by the chemical potential /~k(Y-}. For the case 
that homopolymer A is solubilized in the A domain of 
block copolymer AB,/tA(7] has the form 

1 
/tA (y-} ---- --~---a 7[pA(~) + pH e)  -- 1 ] (19) 

Substitution of equation (19) into (18) yields an equation 
that is very similar to but somewhat simpler than 
equation (7). Obviously, the same procedure may be used 
to solve the problem as in the case of block copolymer. 
Since in homopolymer there are no junctions, the 
equations determining Qk can be simplified as follows 

R 2 ~ = - L-~Q (20) 
or 

0 2 
L~= - d-~- + u(y) (21) 

RA = C/2dA'l ( + q) (22) 
2bA 

Z H t 

q f dtf dyldyoQ(y1,Zn-t;y)Q(y,t;yo) PH(Y) = (1 + q)f~nZ. (23) 
o o 

1 

f ~ . = f  
0 

Q(yt,z.  ;yo)dyldy0 (24) 

0 . 8  - -  

E<0.6 - 

0 . 4 -  

0 . 2 -  

o 

Figure 3 

1 
I I I I 

0.2 0.4 0.6 0.8 1.0 
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Variation of f~ )  of block A chains with q 

1.0 

-r 

0.5 

A 

B 

0.2 0.4 0.6 0.8 1.0 

q 

Figure 4 Variations of f~n of homopolymer A chains with q for 
different values of MH/M^: A, 0.33; B, 1.0; C, 2.0 

with boundary conditions 

Oy y=o OYy=l=0 

and initial condition 

(25) 

Q(y,t = O;y o) = ~(y - y o) (26) 

where the reduced distance y is still defined as 
y = 2x/dA(1 + q). 

In a way similar to that for the case of block copolymer, 
by repeated iteration, a group of {ui(y)} fulfilling the 
requirement of keeping the total density constant was 
found and thus the corresponding fZ n can be calculated. 
Since for the case of pure homo A, Pr, is equal to unity 
everywhere so that f ~ ) =  1, ln f~tn°)=0, the calculated 
K ln fir, is just the conformational entropy change of 
homopolymer A. 

In Figure 4 ~'~n is plotted as a function of q for three 
different values of MH/MA (0.33, 1.0 and 2.0). The curves 
deafly reveal the dependence of flu on the relative 
molecular weight. It is quite understandable since the 
homopolymer molecule of larger molecular weight might 
suffer larger conformation restriction during solubili- 
zation in domains in which the copolymer blocks assume 
unfavourable conformations. It is of interest to note that 
QH always increases with q. Considering that the 
environment of the domain for dissolving homopolymer 
chains might become less unfavourable when more 
homopolymer chains are solubilized, the decrease of 
entropy loss for pure homo A molecule with q becomes 
understandable. However, the contribution of the 
conformational entropy of homo A to the free energy 
change is 

AF M ,  
- q ~ In f~n (27) 

N K T  MH 

showing that AF H is dependent on both q and QH and is 
no longer a monotonic function of q. 

Entropy of mixing 
Since the homo A and block A chains can be regarded 

as being chemically identical, no enthalpy change occurs 
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in the mixing process. Therefore, the only term that must 
be considered for AFfix is the entropy of mixing or the 2.0 
combinatorial entropy. 

Considering the density inhomogeneity of both homo 
and block A chains in the swollen domain, the domain is 
divided into several small regions and the average 1.0 
densities of the bound and free A chains are evaluated in 
each region. Using Flory-Huggins theory t8 it is possible 
to calculate the entropy of mixing for each small region ~. 
and then obtain the total entropy of mixing by summing <1 

0 the values of all the regions. The final expression is 

-~ = -- NH hi(1 -/~i)ln(1 - / 9 i )  

-1.0 

'1 + N(1 + q)h.~Jn~fS~ (28) 

a f / ~ i s . ~  . o . . ~  .,,.....,....._ . . . -  ~ ~ M 

f / 

0.2 0,4 0.6 0.8 1.0 
I I I I I ~ ° ~  q 

• ~ a ~ n .  z . ~  --'" "-- 

~ F  

where (1 -Pi)  and ~ are the volume fractions of homo A 
and block A segments in i-th region respectively. The 
factors ahead of ln(1-Pi) and lnf3i are the number of 
molecules of homo and block A in the i-th region and h~ is 
the width of the region. Using the relation between Nr~ 
and N, equation (28) can be simplified to 

- .  +<,,x ,, ] N---K- . ,LM" ( 1 - ~ , ) I n  (1 -bi)+~iln~, 
(29) 

The corresponding change of the free energy is then 

1.0 

o 

-1.0 

b . . , . . . . . . . . . . . . . . . . . . . . . . .  ~ m M 

0,2 0,4 0.6 0.8 1.0 
I I I I i 

'~..~'~." " "  -,,-...,,.. __ q - ' " -  F 

. ~ .  -~..--.,...~. . . . . .  C 

Fmix ASmix 
N K T - -  NK 

- ( l + q ) ~ h  MA ~,] (30) - , { M .  (1 -~ ' ) ln  (1 - ~ ' ) + ~ ' l n  

The calculated results based on equation (29) are shown 
in Figure 5 for three different values of MH/M A. The 
curves show saturation as q approaches unity. 

DISCUSSION 

The calculated results for the case d/bZl12=2.4 are 

A 

1,5 

1 . 0  

0 . 5  

1 I ¸ I 
0 0.2 0.4 0.6 0.8 1.0 

q 

Figure 5 Variations of the changes of the entropies of mixing with q for 
different values of MH/MA: A, 0.33; B, 1.0; C, 2.0 

1.o 

o 

-1.0 

C 
. . . . . . . . . . . . . . . . . . . . . . . .  _ . . -  - - - -  M 

~ n J I ~ " !  F 
" ~  0.~ 0,4 0.6 0,8 1,0 

Figure 6 Plots of the entropy change of homo chains (ASH/NK, curve 
H), the entropy change of block chains (ASc/NK, curve C), the entropy 
change of mixing (ASmix/NK, curve M) and the free energy change 
(AF/NKT, curve F) as functions ofq for various values OfMH/MA: (a), 
0.33; (b), 1.0; (c) 2,0 

summarized in Figure 6, which presents three typical 
cases, in which the molecular weight of the homopolymer 
is far less than (MH/MA = 0.33), is equal to (MH/M^ = 1) 
and is considerably larger than (MH/MA = 2.0) that of the 
corresponding blocks of the copolymer. 

An inspection of the cases leads to the conclusion that 
the solubilization behaviour of a homopolymer in 
domains of corresponding blocks of copolymer predicted 
by the extended Helfand theory for the density gradient 
model has the following characteristics: 

1. The miscibility strongly depends on the molecular 
weight ratio of the homopolymer to the corresponding 
blocks. 

2. Homopolymer can be substantially solubilized in 
the corresponding domains if MH is equal to or less than 
MA. 
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Figure 6(a) represents the case of homopolymer of 
low relative molecular weight. It is clear that the 
solubilization of homopolymer in the domains results in 
some entropy loss for both homo A and block A chains. 
However, since the molecular weight ratio is low, the 
entropy of mixing is relatively large and increases 
monotically with q; in the whole range 0<q~<l the 
favourable entropy of mixing will exceed the entropy loss 
and then the free energy change in the whole range will be 
negative, i.e. no macrophase separation between the 
homopolymer and copolymer can be found for the blends 
with this molecular weight ratio. 

The results for the more interesting case, MH = MA, is 
shown in Figure 6(b). By comparison with the case 
MH/MA=0.33, the mixing entropy is less while the 
entropy losses are larger. This variation results in 
negative but very small free energy in the range 0 < q ~< 1, 
which means that blends of homopolymer and copolymer 
with the molecular weight ratio MH/MA = 1 should be 
miscible in the range 0 < q ~< 1 at equilibrium but that the 
driving force for the solubilization is limited. In fact, 
several examples can be found in the literature that 
indicate miscibility of homo A and block A at high q 
values. For example, Figure I in ref. 9, which represents a 
blend of SB diblock and PS of molecular weight ratio 
MH/MA = 0.95, shows homogeneous morphology on the 
macroscopic scale. According to the relevant data 
presented in ref. 9, the calculated q value for the blend 
reaches ~ 3. Similarly, in ref. 7, a series of blends of 
diblock copolymer SI and various amounts of PS with 
MH/MA= 0.78 exhibit a homogeneous morphology that 
includes the case where the q value is as large as 5.2. 
Besides, Selb et al. 19 reported that 6.5-10Wt~o 
copolymer can be homogeneously dispersed in a matrix of 
large proportion (90-93.5~o) of low-molecular-weight 
polybutadiene. This experimental phenomenon of a 
block copolymer being able to solubilize a large quantity 
of the homopolymer is understandable in the light of the 
present model. For a system with negative free energy 
change at q = l ,  which means the system exhibits 
homogeneous morphology according to the present 
model, the reduced density of homo A at the centre of the 
swollen domain A by the homo A should reach 1, which 
means that in this part of the domain almost no block 
chains exist and that the homopolymer chains will assume 
the conformations of the homo chains in pure state. Thus, 
it is reasonable to assume that if more homo A is added to 
the system, this kind of swollen A domain will be 
randomly diluted by homo A since this process will not 
cause any more conformational entropy loss but will 
increase the total entropy of the system. In fact this 
argument anticipates that if a blend of a homopolymer 
and the relevant copolymer has negative free energy 
change in the whole range of 0<q~< 1, it is likely that the 
blend will show homogeneous morphology on the 
macroscopic scale for any composition of the component 
polymers. 

Since the free energy change is very close to zero for 
MH/MA = 1, it is expected that the free energy change will 
become positive and macrophase separation between the 
homopolymer and copolymer will occur as MrffMA 
increases further. The results shown in Figure 6(c) clearly 
demonstrate that the free energy change for MH/MA = 2.0 
turns out to be positive as a result of the decrease of the 

mixing entropy and increase of the conformational 
entropy loss of homo chains as MH/MA increases. Inoue et 
al. 7 came to the important conclusion based on 
systematic electron microscopy studies of polymer blends 
of diblock copolymer and homopolymers that 
homopolymer can be solubilized in the domains of 
corresponding blocks if the molecular weight of the 
former is less than that of the latter; otherwise they are 
immiscible. Later, much experimental data were 
published a-~° that supports this conclusion. In this 
paper, the extended Helfand theory based on the density 
gradient model clearly explains the nature of the 
miscibility of homopolymer and copolymer with lameUar 
structure and is generally in agreement with the 
experimental results. 

The calculated results just discussed are for the case of 
d/bZ~/2=2.4. Calculations were also carried out for 
another typical case of d/bZ ~/2 = 3.1, indicative of much 
higher molecular weight. The results show the same 
characteristic features as that for d/bZ x/2 = 2.4. However, 
since the entropy losses of both homo and block chains 
increase with MH and MA, for the same molecular weight 
ratio, the driving force for mixing of the system with 
higher value of d/bZ 1/2, i.e. higher molecular weight, will 
be less than that of the low d/bZ 1/2 system. 

Finally, it is emphasized that the theoretical results in 
this paper were obtained only for diblock copolymer of 
lamellar structure. The preliminary success suggests using 
the extended Helfand theory and the density gradient 
model to handle the miscibility of homopolymer and 
copolymers with different microphase structures or 
complicated architectures, provided the architectural 
difference is fully taken into account. 
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